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Abstract— Two Computational Intelligence techniques, neu-
ral networks-based Multivariate Time Series Model Mining
(MVTSMM) and Genetic Programming (GP), have been used
to explore the possible relationship between solar activity
and temperatures in Central England for the 1721 to 1967
period. Data driven analysis of multivariate, heterogeneous and
incomplete time series are needed in order to understand the
extreme complexity of the climate machinery and to detect the
possible relative contribution of influencing processes, like the
Sun, whose decadal and centennial role in the climate is still
debated.

Experiments were carried out using each one of these
techniques and their combination. Time-lag spectra obtained
by means of MVTSMM seems to indicate time stamps of
some of the relevant Earth-climate and solar variations on
the temperature record. The equations provided by GP ap-
proximated analytically the relative contribution of particular
solar activity time-lags. These preliminary results, even if they
still are insufficient to support or discredit possible physical
mechanisms, are interesting and encouraging to explore more
in that direction.

I. INTRODUCTION

Minimum. In Europe, by the end of the medieval times,

winter temperatures dropped down so much that, in 1939,
Matthes coined for that period the rather informal term of
"Little Ice Age”. Such period, whose universality is under

ongoing discussion, has been repeatedly put in relatipnshi
with the Maunder Minimum, establishing the basis for a large
research effort on the solar-climate link.

However, there are a number of difficulties: the scarcity
and reliability of past climate data (many are just proxies)
the difficult reconstruction of long sunspots records, the
assumption of a direct relationship with sunspots (but they
are also a proxy of the Sun’s activity), and the difficulty
of establishing clear cut First-Principles approaches.iSo
is unsurprising that most simulation models usually avoid
the inclusion of some external climate forcing mechanisms
and instead put the emphasis on well known climate-related
processes. Meanwhile, solar physicists have been pointing
to the extraordinary activity of magnetic solar ejections
for the last half century. Some even say the activity is
without precedent in the last ten thousand years [31] [24],

Humans have always tried to find ways to forecast thgyt others disagree [22]. The current accepted knowledge
whims of weather and climate. When sunspot observationgout the present climate change implies a major role of the
became well established, it was natural to look for solagnthropogenic activities [8] while also acknowledging the
causes. W. Herschel, in 1801, was the first to spot thresence of natural causes, with the Sun leading them.
relationship and publish it [6]. Since then, a large number New research is now focusing on first principles ex-
of scientists have refined the search. The Sun is, no dOUB‘anations for external forcing mechanisms, as they not

the source of the Earth’s climate but it acts through a cormpleynly may be of relevance to the future of climate but
network of intermediate mechanisms, which make the findingiready are of the highest importance for our satellites, th

of simple relationships extremely difficult. Today, sin¢®t gpace exploration and many Earth based systems. Two main
arrival of SatelliteS, there is a fair kn0W|edge of climale t and Comp|ementary lines of research seem very promising:
World over, but it iS d|ﬁ:|CU|t to Understand the precise I’Olqhe e|ectric Circuitry of the ionosphere_atmosphere.l’&rt
of basic contributions such as oceans and the Sun itself. gyrface system [26] and its modulation via cosmic rays
In the past, the only readily available measurement of thectivity [25], both affected by the solar activity and both
Sun's activity was counting the variable number of spotgffecting the processes of cloud formation and hence all the
which appear on its surface, something that could onlyimatic system. But, apart from theoretical considerajo
be reliably done after Galileo in 1613. During 1843 H.an important issue is to try to extract more information from
Schwabe observed the evolution of sunspots and suggestge available data.
the presence of the 11 year cycle bearing his name. FiveThe maximum common length of monthly climatic and
years later, J. R. Wolf devised the daily index of sunspotsp|ar data available reaches back to 1659, but probably only
aCtiVity which remains the mainly one in use. At the turn Og/eaﬂy aggregated values can be used with some confidence
the 20-th Century, E. W. Maunder discovered a period -fromi9]. Computational intelligence techniques have been ex-
1645 to 1715- with very low sunspot activity -the Maundetensively applied to the analysis of both Earth’s tempeeatu

_ o , , _and Solar Sunspots data. Preferred techniques have been
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is interesting because it produces models in the form a@h sunspot groups, allowing more precise reconstructions o
analytical functions, which are very familiar to expertsrfr  historic conditions while extending the records back tol61

climatological and astronomic communities. From 1848 on, both indexes are nearly identical. This paper

This paper explores the use of two computational inuses GSN.

telligence techniques: neural networks-based time series |||
model mining and model discovery of analytic functions
(via genetic programming), for mining relationships betwe
measured temperatures on earth and solar activity. Th

M ULTIVARIATE TIME SERIESMODEL MINING

The purpose of model mining in complex data coming
efggm heterogeneous, multivariate, time varying processes

techniques are applied independently and then combinéa,n’ [28], [29] is to discover dependency models. A model

complementing each other. This is a promising approaci P €SS€s the rel_ationship between values of a previously
for determining potential relationships among severaktim selected time series (the target), and a subset of the past

series of different complex processes. The neural network\éalues of the entire set of series. Different classes of-func

based time series model mining (MVTSMM) focuses or{'onal_ models may be cgnsidered, in particular, a generdliz
extracting information about the inner structure of theesgr non-linear auto-regressive (AR) model

whereas in genetic programming explicit analytic funcsion Si(t—=711) 5 S1(t = T1p,)s

are constructed as function approximations describing the Sp(t) = F So(t —791), -+, S2(t — Tap,), 1)
data. It could very helpful to determine and quantify the

relative contribution of natural and anthropogenic causes Sn(t—Tn1), 5 St — Tnp,)

behind present climatic change. Hopefully it would be done where 57 (¢) is the target signal at time S; is the i-th
some day. time seriesp is the total number of signalg; is the number
Il. DATA of time lag terms from signal influencingSr(t), 7; . is the

The longest available instrumental temperature record ffs'th lag term correspondmg tq _5|gnal(k € [L,pi)), andF
iS the unknown function describing the process.

the one compiled by Manley [15] for central England, which The classical approaches in time series mostly consider

dates backs to 1772 for mean daily data and to 1659 for meaﬂivariate, homogeneous (real-valued) time series withou

monthly data. Maximum and minimum daily data are alsg . . : I
available, beginning in 1878. The record is built from irdan missing values [2], [23], [21]. Conventional multvariate

: h . approaches are complex and have difficulties in handling
representative stations, a roughly triangular area eedlby heterogeneity, imprecision and incompleteness. A hybrid

o e et oo (1ofoftcompuing alorim o these kinds o probiems sig
200 m in height) of Staffordshire, Shropshire and North eterogeneous neural networks and genetic algorithms was

Warwickshire. Extreme care was but by Manlev on IOCat.On|_ntroduced in [27], in the spirit of [20]. It requires the
Wl Ire. =X - was put by y HOMimultaneous determination off) the number of required
avoiding frost-hollows or windswept ridges, trying to find

"the most probable mean temperature” of a group of well rulr?gs for each seriegii) the particular lags within each series
i X : . . - ing the d d inf ti iig) th dicti
stations of the midlands countries, and making ad]ustmantscarryIng e dependency information, afig) the prediction

century old monthly means in order to bring them to moderEunCtion' A requirement on functiof- is to minimize a
y y 9 uitable prediction error measure. The Multivariate Time

standards. Since 1974 the data have been adjusted to a”é%’ries Model Mining procedure (MVTSMM) is based on:
for urban warming. The uncertainty had been assessed si )

, . 3? exploration of a subset of the model space with a genetic
1878 [19]. Accordmgly, th's _study focusses on the analysi Igorithm, and (b) use of a similarity-based neuro-fuzzy
of mean annual time series instead of monthly means. This

. . : ) . _sSystem representation for the unknown prediction function
choice takes into account the possible delays in clima The process implies a search in the space of neuro-
response to solar activity and the intrinsic difficulties inf'

) o ._fuzzy networks (Fig.2). This approach is usually appliechon
ggg:ﬂglgghlarger amounts of data within the present anaﬂyt'csliding time-window so that an exploration of the structafe

The CET data are made available by the British At}he_mgltwanate_ series can be maqle,_ using the mined models
. indicator of internal changes within the process. One way

mospheric Data Center. The CET 1721-1967 record & o . .

. P of describing the results is to compute the weighted lag

mean yearly temperatures is shown in Fig.1 (top). These . :

. . : mportance function, whose general form is

temperature data have been analyzed in relationship to the A R R

solar activity as expressed by the Group Sunspot Numbers S M) (7 0 Ma(8)) - F(MG(E)) 5

(GSN) during the same period of time, Fig.1 (bottom). The LUt p.q) = anrd(M) f(/\?lz)(t) (2)

sunspots index introduced by Wolf in 1848 is a combination . i=1 !

of counting sunspots groups and individual spots. He madéereM is the set of discovered models for a given window,

a reconstruction of the series till 1700, using historicad o card(M) is its cardinality, M;(t) € M is the i-th model

servations. Today his index, which is often called the Zuricfound at timet, (7,4, M;(t)) is the boolean membership

Sunspot Numbers, is published daily by the Sunspot Inddunction of lag 7, , ( from Eq.1 ) with respect to\;(t),

Data Center in Belgium. A new index, the Group Sunspotand f(M;(t)) is a strictly positive model quality measure

Numbers, has recently been introduced [7],[3] based soleffitness) onM.
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Fig. 1. Central England Temperatures (CET) and Group Suri$potbers (GSN) in the period721 — 1967. The vertical line atl888 indicates the
division between the training and validation s€t5% for training and25% for validation).

MVTSMM-Parallel Signal Set gene deletion. A computer program is understood as an
¥ 7 R PR PR A entity that receives inputs, performs computations which
* i transform these inputs and produces some output in a finite
> T - V , amount of time. The operations include arithmetic computa-
S S N troining | test i iblv i ; ; .
13 0. 2@ RSO 2 2 tion (possibly involving many other functions), conditals,
e iterations, recursions, code reuse and other kinds of imdier
A A A/ v tion processing organized into a hierarchy. GP combines the

expressive high level symbolic representations of compute
programs with the search efficiency of the genetic algorithm

prediction prediction prediction prediction

ERROR ERROR ERROR ERROR . . .
For a given problem, this process often results in a computer
l, program which solves it exactly, or if not, at least provides
100100001700 BEST MODEL” a fairly good approximation.
(MODELS)

There are several approaches to GP leading to a plethora

Fig. 2. Multivariate Time Series Model Miner System (MVTSMMhe arc ~ Of variants (and implementations) and a discussion about
(Ieft)_isaparallel genetic algori'thm evo_lving populatoof similarity-based  theijr relative merits, drawbacks and properties is beyond
hybrid neural networks. The binary strings encode depesydpatterns for . . .
the target signal. For each, a hybrid neural network is cootd and trained the scope of this paper. One of these GP teChn'queS 1S
with a fast algorithm. The network represents the predicfiorction, and the Gene Expression Programming (GEP) [4], [5]. GEP
is applied to an independent validation set. The best modelsdlected.  jndividuals are nonlinear entities of different sizes ahdpes
(expression trees) encoded as strings of fixed length. For
the interplay of the GEP chromosomes and the expression
trees (ET), GEP uses an unambiguous translation system to

Analytic functions are among the most important buildingransfer the language of chromosomes into the language of
blocks for modeling, and are a classical way of expressingxpression trees and vise versa. The structural organizatfi
knowledge, which has a long history of usage in scienc&EP chromosomes allows a functional genotype/phenotype
From a data mining perspective, direct discovery of generatlationship, as any modification made in the genome always
analytic functions poses enormous challenges because of tesults in a syntactically correct ET or program. The set
(in principle) infinite size of the search space. of genetic operators applied to GEP chromosomes always

Within computational intelligence, genetic programmingroduces valid ETs. The chromosomes in GEP itself are
techniques aim at evolving computer programs, which ulteomposed of genes structurally organized in a head and
mately are functions. Genetic Programming (GP) introduceal tail [4]. The head contains symbols that represent both
in [10] and further elaborated in [11], [12] and [13], isfunctions (elements from a function set F) and terminals
an extension of the Genetic Algorithm. GP starts with gelements from a terminal set T), whereas the tail contains
set of randomly created computer programs. This initiabnly terminals. Therefore, two different alphabets occur a
population goes through a domain-independent breeding pmifferent regions within a gene. For each problem, the lengt
cess over a series of generations. It employs the Darwiniar the headh is chosen, whereas the length of the tai a
principle of survival of the fittest with operations similarfunction of h, and the number of arguments of the function
to those occurring naturally, like sexual recombination oWith the largest arity. The length of the tail is evaluatedegi
entities (crossover), occasional mutation, duplicatiom a by ¢ = h(n — 1) + 1. As an evolutionary algorithm GEP

IV. GENETIC PROGRAMMING



i . . TABLE |
defines its own set of crossover, mutation and other oparator
EXPERIMENTAL SETTINGS FOR THEGENETIC PROGRAMMING RUNS

[5] CORRESPONDING TO THEEXP.1 SUITE (62, 208 RUNS).

V. EXPERIMENTAL SETTINGS

[ Parameter [ values ]
The length of the CET and GSN data in the 1721- seed 13292, 19257, 27576}

1967 period is247 and from these samples training and generations {200, 1000, 2000}
validation matrices were constructed usitigpredictor vari- population Siée {20073007 2400}
ables from both. LetCET(t) be the observed value of 'r?]\;f;'gr? grrgb {0{.844’70()'_0}6}
CET at timet; accordingly, the set of predictor variables num genes {5,8,12}
was formed as the following lagged variablgSSN (¢ — gene head size {8,12,15}
25), GSN(t—24),- - ,GSN(t—1), CET(t—25), CET(t— > ranspostion. }8}83{
24),--- ,CET(t — 1), thus making a total o0 predictor one poinri recomb 03,05}
variables. In all experiments the training set contaifigh two point recomb 0.3,0.5}
of the data whereas the remainigg% was put aside for gene recomb _ 0.1,0.2}

gene transposition] {0.1, 0.2}

validation. Accordingly, the number of training samplesswa
167 and the number of validation sampl&5s.

Different types of experiments were made with the abovgyyer are derived from well known distance functions by the
described data: transformations = 1/(1 + d), where s is a similarity and

Exp.1 Model mining via Genetic Programming using the; is a distance function. The experimental settings used for
training and validation matrices with tt3@ original  the MVTSMM runs corresponding to the Exp.2.a suite are
predictor variables. shown in Table.Il. In this case, the entire signal is covered

Exp.2 MVTSMM exploration of the bivariate GSN-CET py a single exploration window characterizing the process a
series: a whole and it provides a one-dimensional lag importance

a using a single observation window cover-function (Eg.2).

ing the entire length of the series, in order

. TABLE Il
to characterize the process as a whole.

EXPERIMENTAL SETTINGS FOR THEMVTSMM RUNS CORRESPONDING

b sliding a window of smaller length1(1
. . . TO THE EXP.2.A SUITE.
sampling points), in order to explore the
finer structure of the process and detect [ Parameter [ values \
potential model changes over time. ResponsiveHiddenNeurons {3,4,5}
For both Exp.2.a and Exp.2.b suites, the SimilarityFunction {euclidean, clark, canberra}
. . _ NumberOfGenerations {100, 250, 500}
lag importance function (Eq.2) was com PopulationSize {50, 100, 200}
puted. In the case of Exp.2.a, a subset |[RandomSeed {324, 280887, 160587}
of more relevant predictor variables (time CrossoverOperator {One — Point, Two — Point,
lags) were derived. . Uniform}
_g ) . . . . GeneticAlgorithm {Simple, Deme}
Exp.3 Model mining via Genetic Programming using NumberPopulations {4y
training and validation matrices containing only the | SelectionScheme {Rank, Rouletteﬂgheel,
: : Tournament
sel_ected lags fr_om Exp.?.a as predictor variables. CrossoverProbabiliy 106.07.03]
All genetic programming experiments were conducted us- [ MutationProbability {0.01,0.02,0.04}

ing the GEP technique described in Section.VI-A with a fixed
Function set given by{+, —, %, 2¥, e”, In(z)}. Experiments With the purpose of exploring the inner structure of the
of the Exp.1 suite used the parameters shown in Table.l. time varying process, a window of lengtb1 (less than one
total the Exp.1 suite containe&®, 208 evolutionary compu- half of that of the GSN and CET records), was slid along
tation runs. the series. Such a window length0() is a compromise

In the MVTSMM exploration a group of parameters definebetween a large window in which there are enough training
on one hand the kind of genetic algorithm to use, and on ttend validation samples and a small enough that enables the
other hand, the specificities of the similarity-based nleuraetection of changes in time. The experimental settingd use
network model to use [27], [28]. Among these parametersor the MVTSMM runs corresponding to the Exp.2.b suite
the type of similarity function, the number of responsiveare shown in Table.lll. In this case, the entire signal is
neurons in the hidden layer, etc. play an important rolecovered by a collection of exploration windows, providing a
This is because the network is designed to produce ontwo-dimensional lag importance function (image spectrum)
a coarse estimate of the target, with a training scheme th@@ccording to Eq.2).
doesn't iterate over the training set and therefore is exttg In order to assess the ability of the set of relevant lags
fast. This is a requirement imposed by the fact that thebtained from Exp.2.a, new training and validation magice
genetic algorithm evolves populations of such networke Thwere derived from the original GSN and CET data, this time
similarity functions used in the neuron model at the hiddensing only those lags as predictor variables. The derimatio



TABLE Il

EXPERIMENTAL SETTINGS FOR THEMVTSMM RUNS CORRESPONDING Finally, the filtered models were sorted according to their

RMSE for the training set and aBnsemblemodel was

Exp.2, . | . i
TO THEEXP.Z8 SUITE constructed (by simple averaging) with the three top models

[ Parameter [ values ] The behavior of the ensemble model is shown in Fig.3 The
ResponsiveHiddenNeuronis {3,4,5} ensemble model falls short at describing the observed CET
SimilarityFunction {euclidean, clark, canberra} values. This is not surprising, as solar activity is only ofie
NumberOfGenerations {500 . ,

PopulationSize {200 th very many factors c_ontrollmg Earths_ temperaturg. What
RandomSeed {3498,39245} is interesting is that a kind dfackgroundsignal is obtained,
CrossoverOperator {One — Point} which (for both the training and the validation set, this one
GeneticAlgorithm {Deme} never seen by the GP model), significantly correlates with
NumberPopulations {4} - . .
SelectionScheme [Tournament} the observations. Table.\_/. The correl_atlo_ns are not hlgh an
CrossoverProbability {0.6,0.8} clearly not enough to derive far reaching inferences, beit th
MutationProbability {0.01,0.02,0.04} statistical significance is at least suggestive.

TABLE V

of the set of relevant Iags was made by thre5h0|ding the RMSEAND CORRELATION COEFFICIENT FOR THE ENSEMBLE OF
lag importance function with values around one half of its EXPERT MODELS CORRESPONDING T&XP.1 AND EXP.3 SUITES.
maximum and then retaining those |ags with importance CRITICAL 7 AT THE o = 0.5 CONFIDENCE LEVEL TRAINING SET:
equal or greater than the threshold value. The threshold re = 0.1516 (D.F=165). QRITICAL rc FOR THE VALIDATION SET
values used wer®.5 and 0.6. Table.lV shows the set of rc = 0.2735(D.F=53).(*) INDICATES SIGNIFICANCE AT THEx = 0.5

parameters used for the Exp.3 suite. In this case, a more CONFIDENCE LEVEL
modest exploration of the model search space using GP was RVISE
made, leading to onl$96 GP runs. Experiment| Training | validation Number of
suite predictor variables
TABLE IV Exp.1 0.54929 | 0.54859 50
EXPERIMENTAL SETTINGS FOR THEGENETIC PROGRAMMING RUNS Exp.3 0.57345 _ 0.56005_ _ 10
CORRESPONDING TO THEEXP.3 SUITE (396 RUNS). Correlation Coefficient
Exp.1 [ 0.385 () | 0.345 () 50
[ Parameter [ values ] Exp.3 0.197 () | 0.321 (%) 10
seed {3293, 19257, 27579, 29001, 11881,
23,1931, 9501, 3451, 7391, 7001}
generations {2000} B. Exp.2.a suite
population size {400} . . . .
inversion prob 10.1,0.2] The one-dimensional lag-importance function for all mod-
mutation prob {0.044,0.067} els resulting from Exp.2.a is shown in Fig.4 (for the
num genes _ {5,8,12} GSN and CET series). In order to select a subset of
gene head size {8,12,15}
is transposition {0.1}
ris transposition {0.1} 12 F T T L 3
one point recomb {0.3} 1 GEN .
two point recomb {0.3} 08 7
gene recomb {0.1} 06 7
gene transpositior {0.1} na N
02 r I
The fltness funCtlon used by bOth GP and MVTSMM Was’ 1 2 3 4 5 B 7 8 910111213 1415 16 17 18 19 20 21 22 23 24 25 26

in all cases, classical Root Mean Squared Error (RMSE). |, —m——————————————+——+—++++
is defined asRM SE = \/M where P; and T; !

n - -

are the predicted and target values for thih observation EE L i
respectively and: is the number of samples. 0 b w i
02 *

VI. RESULTS o

12 3 4 5 6 7 8 9101121314 151617 18192021 22 23 24 26 %

A. Exp.1 suite

In thi it ' m | tentially involve th riginal Fig: 4. Lag Importance Spectrum corresponding to the singhelow ex-
S sulte, a odels potentially olve the origina iment covering the entire observation record. Top: GSY loaportance

50 predictor variables. At_ a post-prqcessing stage, the S_et ectrum £ (¢, 7,4) functions)). Horizontal axis is the time lag in years,
62,208 GP models obtained was filtered for those whichBottom half: CET spectrum. Each of them contaitislags.

i) contain variables related with solar activity (i.e. GSN

terms in the model expressions), have Pearson correlation more relevant lags, threshold§,j with values 0.5 and
coefficients statistically significant at tlhe= 0.5 confidence 0.6 were applied to the lag importance functions. The re-
level for both the training and the validation sets. sulting subsets of relevant lags obtained with = 0.5
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Fig. 3. Comparisson of the observed CET record with an enseofbdxperts model derived from the three best models obtainéu @# under the
experimental settings of Table.l an@ predictor variables. The vertical line divides the tragmand the validation sets. The correlations between the CET
values and the Ensemble model for both the training and thdatadn sets were statistically significant at #he= 0.5 confidence level.

were gsn : {1,3,6,7,15,16,17,21,23,24,25} and cet : the process.

{1,2,3,4,5,6,7,8,9,11,15,17,19, 20, 22,23, 25} for a to- 206

tal of 28 predictor variables. The subsets obtained With= T(t) =k + Ty—17 + In(2 % Ty_15) + In(In(In(T,—1)))

0.6 weregsn : {3,6,7,17,24} andcet : {1,15,17,23} for

a total of 10 predictor variables. They represent a reduction —In(Si—17 + St—16 — Ti—15 + St—24 * Ty—1

factor of 0.56 and0.2 with respect to the original number of —Sy_g*Tpoq +eh'7) €)

50 predictor variables. [385] ,

T(t) =kz + In(In(((ks — Se—16) + (T;_15 — St—24))))

C. Exp.2.b suite oy + In(Tioa) + ks + In(Tioas) = Tia
The two-dimensional lag importance function correspond- wherek; = 6.439965, ky = 6.954522, ks = —3.966609,

ing to the joint analysis of the CET and GSN series with+ = 237-173277. The numbered brackets on top of the

MVTSMM and the parameter settings from Table.ll isTodels are only identifiers.
shown in Fig.5. Calendar time is on the x-axis and time A model ensemble using those of Eq. 3 was constructed by

lag value on the y-axis. The relative importance of th&imple average. Its b_ehavior is shown in Fig.6 and Table.V.
different time-lags is expressed by grey levels on the imag%lthough its correlgtlon _values are smaller than thps_e of
(spectrum). For each spectrum the maximum time-lag is zg]e _e_nsemble obtained in Exp.1, they are also statistically
increasing towards the top. MVTSMM has clearly produced'dnificant. The RMSE values are only slightly larger, and
a more textured structure for the GSN time-lags, leaving CE§9@in, it is interesting to observe that the model space
time-lags in a sort of non-differenciable noisy state. EheseXplored here is considerably smaller (onily predicting
changes are expressed in the mean RMSE function as wéiriables were used). Note that from them oflyariables
(Fig.5 top), indicating that the structure of the procesesdo (a further reduction) are included in the ensemb[e model
change with time. The presence of solar cycles 2 (1766-1778)" : {3,16,17,24}, and cet : {1,15,17}). Interestingly,
and 4 (1784-1798) seem to still be present on the explanatigify correspond to peak locations in the Lag Importance
of CET data until 1807. The end of the Dalton minimum>Pectra of Exp.2a (Fig. 5), not only to values above (itte
(1790-1820) is also well marked. During 1843-1853, GS&hreshold. The peaks are particularly We.II.expressed in the
time-lags 5, 12 and 24 seem to be the preferred, almog‘lS_N series, which is a proxy of solar act!V|ty. These regults
exclusivelly, while this is not the case for other periods. jindicate that the chosen lags carry meaningful information
seems that the GSN contribution to the CET data explanation,
according MVTSMM analysis, follows a rather complex
and changing pattern. Its int'erpretation and possibleipdlys a5 the world’s largest temperature record, CET data has
meaning, however, are outside the scope of the present papien subjected to intense research [1]. In spite of that, we
believe that the techniques used in this paper could open
D. Exp.3 suite a window to new possibilities for exploration. These are
very preliminary results emerging from data mining of a
The subset ofl0 lags derived from Exp.2.a when thevery complex problem, which requires further investigatio
threshold of0.6 is applied to the 1-D lag importance func- Although suggestive, the connection of the results with rea
tion, were used for a smaller series of GP model mininghysical processes remains uncertain in spite of their very
experiments. Model selection was made using the criterfromising character. The models obtained are only function
described in VI-A and two models were found at the end adipproximations which seem to be valid exploration tools for

VII. CONCLUSIONS



a.74 T T T
a.,.F72

a.7
e.649
B8.66
8.64
e.62

mean RHSE

a.5 ' : ]

1958

Fig. 5. Top: mean RMSE for the models mined by MVTSMM for the cspending period. Bottom: Lag importance spectf&’(t, 7p,4) functions)).
Horizontal axis is time in years, vertical axis is the lag witfspect to the current time position. The dotted line separtite two spectra. Upper half:

GSN spectrum. Lower half: CET spectrum. Each of them cont2inkgs.
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Fig. 6. Comparison of the observed CET record with an ensenfl#gperts model derived from the two statistically significarodels obtained with GP
under the experimental settings of Table.lll and ohlypredictor variables, selected according to a thresholdl ®@fpplied to the lag importance function
obtained with MVTSMM. The vertical line divides the traigirand the validation sets. The correlations between the CGHifes and the Ensemble model

for both the training and the validation sets were statifificsignificant at then =

orienting further work. The use of these and other com{2]
putational techniques on different suspected processect!

data (with cross-checking), could provide new and inténgst (3l
momenta in the global warming issue. The results obtained
here are suggestive, but preliminary and further research i4]
necessary. They should not be used to prove or disprove the
possible physical mechanisms behind global warming. (]
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